Carrier Sense Mutiple Access Protocols
In both slotted and pure ALOHA, a node's decision to transmit is made independently of the activity of the other nodes attached to the broadcast channel. In particular, a node neither pays attention to whether another node happens to be transmitting when it begins to transmit, nor stops transmitting if another node begins to interfere with its transmission. As humans, we have human protocols that allow allows us to not only behave with more civility, but also to decrease the amount of time spent "colliding" with each other in conversation and consequently increasing the amount of data we exchange in our conversations. Specifically, there are two important rules for polite human conversation:- Listen before speaking: If someone else is speaking, wait until they are done. In the networking world, this is termed carrier sensing - a node listens to the channel before transmitting. If a frame from another node is currently being transmitted into the channel, a node then waits ("backs off") a random amount of time and then again senses the channel. If the channel is sensed to be idle, the node then begins frame transmission. Otherwise, the node waits another random amount of time and repeats this process.
- If someone else begins talking at the same time, stop talking. In the networking world, this is termed collision detection - a transmitting node listens to the channel while it is transmitting. If it detects that another node is transmitting an interfering frame, it stops transmitting and uses some protocol to determine when it should next attempt to transmit.
CSMA- Carrier Sense Multiple Access
This is the simplest version CSMA protocol as described above. It does not specify any collision detection or handling. So collisions might and WILL occur and clearly then, this is not a very good protocol for large, load intensive networks. So, we need an improvement over CSMA - this led to the development of CSMA/CD.CSMA/CD- CSMA with Collision Detection
In this protocol, while transmitting the data, the sender simultaneously tries to receive it. So, as soon as it detects a collission (it doesn't receive its own data) it stops transmitting. Thereafter, the node waits for some time interval before attempting to transmit again. Simply put, "listen while you talk". But, how long should one wait for the carrier to be freed? There are three schemes to handle this:- 1-Persistent: In this scheme, transmission proceeds immediately if the carrier is idle. However, if the carrier is busy, then sender continues to sense the carrier until it becomes idle. The main problem here is that, if more than one transmitters are ready to send, a collision is GUARANTEED!!
- Non-Persistent: In this scheme, the broadcast channel is not monitored continuously. The sender polls it at
random time intervals and transmits whenever the carrier is idle. This decreases the probability of collisions.
But, it is not efficient in a low load situation, where number of collisions are anyway small. The problems it entails
are:
- If back-off time is too long, the idle time of carrier is wasted in some sense
- It may result in long access delays
- p-Persistent: Even if a sender finds the carrier to be idle, it uses a probabilistic distribution to determine whether to transmit or not. Put simply, "toss a coin to decide". If the carrier is idle, then transmission takes place with a probability p and the sender waits with a probability 1-p. This scheme is a good trade off between the Non-persistent and 1-persistent schemes. So, for low load situations, p is high (example: 1-persistent); and for high load situations, p may be lower. Clearly, the value of p plays an important role in determining the performance of this protocol. Also the same p is likely to provide different performance at different loads.
CSMA with Collision Avoidance
Hidden Node Problem
In the case of wireless network it is possible that A is sending a message to B, but C is out of its range and hence while "listening" on the network it will find the network to be free and might try to send packets to B at the same time as A. So, there will be a collision at B. The problem can be looked upon as if A and C are hidden from each other. Hence it is called the "hidden node problem".Exposed Node Problem
If C is transmitting a message to D and B wants to transmit a message to A, B will find the network to be busy as B hears C trnasmitting. Even if B would have transmitted to A, it would not have been a problem at A or D. CSMA/CD would not allow it to transmit message to A, while the two transmissions could have gone in parallel.Addressing hidden node problem (CSMA/CA)
Consider the figure above.Suppose A wants to send a packet to B. Then it will first send a small packet to B called "Request to Send" (RTS). In response, B sends a small packet to A called "Clear to Send" (CTS). Only after A receives a CTS, it transmits the actual data. Now, any of the nodes which can hear either CTS or RTS assume the network to be busy. Hence even if some other node which is out of range of both A and B sends an RTS to C (which can hear at least one of the RTS or CTS between A and B), C would not send a CTS to it and hence the communication would not be established between C and D. One issue that needs to be addressed is how long the rest of the nodes should wait before they can transmit data over the network. The answer is that the RTS and CTS would carry some information about the size of the data that B intends to transfer. So, they can calculate time that would be required for the transmission to be over and assume the network to be free after that.Another interesting issue is what a node should do if it hears RTS but not a corresponding CTS. One possibility is that it assumes the recipient node has not responded and hence no transmission is going on, but there is a catch in this. It is possible that the node hearing RTS is just on the boundary of the node sending CTS. Hence, it does hear CTS but the signal is so deteriorated that it fails to recognize it as a CTS. Hence to be on the safer side, a node will not start transmission if it hears either of an RTS or a CTS.The assumption made in this whole discussion is that if a node X can send packets to a node Y, it can also receive a packet from Y, which is a fair enough assumption given the fact that we are talking of a local network where standard instruments would be used. If that is not the case additional complexities would get introduced in the system.
Does CSMA/CD work universally in the wired networks ?
The problem of range is there in wired networks as well in the form of deterioration of signals. Normally to counter this, we use repeaters, which can regenerate the original signal from a deteriorated one. But does that mean that we can build as long networks as we want with repeaters. The answer, unfortunately, is NO! The reason is the beyond a certain length CSMA/CD will break down. The mechanism of collision detection which CSMA/CD follows is through listening while talking. What this means is so long as a node is transmitting the packet, it is listening on the cable. If the data it listens to is different from the data it is transmitting it assumes a collision. Once it has stopped transmitting the packet, and has not detected collision while transmission was going on, it assumes that the transmission was successful. The problem arises when the distance between the two nodes is too large. Suppose A wants to transmit some packet to B which is at a very large distance from B. Data can travel on cable only at a finite speed (usually 2/3c, c being the speed of light). So, it is possible that the packet has been transmitted by A onto the cable but the first bit of the packet has not yet reached B. In that case, if a collision occurs, A would be unaware of it occurring. Therefore there is problem in too long a network.Let us try to parametrize the above problem. Suppose "t" is the time taken for the node A to transmit the packet on the cable and "T" is the time , the packet takes to reach from A to B. Suppose transmission at A starts at time t0. In the worst case the collision takes place just when the first packet is to reach B. Say it is at t0+T-e (e being very small). Then the collision information will take T-e time to propagate back to A. So, at t0+2(T-e) A should still be transmitting. Hence, for the correct detection of collision (ignoring e)
t > 2T
Collision Free Protocols
Bit-Map Method
In this method, there N slots. If node 0 has a frame to send, it transmit a 1 bit during the first slot. No other node is allowed to transmit during this period. Next node 1 gets a chance to transmit 1 bit if it has something to send, regardless of what node 0 had transmitted. This is done for all the nodes. In general node j may declare the fact that it has a frsme to send by inserting a 1 into slot j. Hence after all nodes have passed, each node has complete knowledge of who wants to send a frame. Now they begin transmitting in numerical order. Since everyone knows who is transmitting and when, there could never be any collision. The basic problem with this protocol is its inefficiency during low load. If a node has to transmit and no other node needs to do so, even then it has to wait for the bitmap to finish. Hence the bitmap will be repeated over and over again if very few nodes want to send wasting valuable bandwidth.Binary Countdown
In this protocol, a node which wants to signal that it has a frame to send does so by writing its address into the header as a binary number. The arbitration is such that as soon as a node sees that a higher bit position that is 0 in its address has been overwritten with a 1, it gives up. The final result is the address of the node which is allowed to send. After the node has transmitted the whole process is repeated all over again. Given below is an example situation.Nodes | Addresses |
---|---|
A | 0010 |
B | 0101 |
C | 1010 |
D | 1001 |
---- | |
1010 |
0 comments:
Post a Comment